岡山理科大学 2026 年度推薦 A 日程 解答と配点 ^{2025年11} ^P Hitips: Illyusin.com/

HitiPs://JUSII.

HitiPs: III Misir

Jin Com

IIIUSIN.COM

HitiPS: III JUSIII

Tivil Ein Comi

SILIANZIN SILIYUSIII 岡山理科大学 英語解答 2025年11月19日実施 推薦

1

(1) 1 - F2 - F $3 - T \quad 4 - T \quad 5 - F$ (1) 4点×5

(2)(a) 4 (b) 2

(2) 4点×2

(3) (1)

2

(3) 4点×2

(4) (a) 3

(b) 1

(4) 4点×2

(5) 略

(5)6点

Jim Gin.com

, rivingsin.com

I I COM

2025年11月19日実施 岡山理科大学

- 1 (1) 9
 - $(2) \{2, 3, 7\}$
 - (3) $a_n = 7n 22$

(1) 10点 (2) 10 点 (3) 10 点

- $\boxed{2} \ (1) \ \frac{1}{56}$
 - (2) $\frac{5}{28}$

- (1) 10 点 (2) 10 点 (3) 15 点 (3) $C_1:(0,0), C_2:(1,0)$ (2) y-0, y=2x-1 (3) $\frac{1}{12}$ (1) 10 点 (2) 10 点 (3) 15 点

Jim Sin Con

His III COM

Hirmsin.com

2025 年 11 月 19 日実施 岡山理科大学 推薦 A 化学基礎解答

1 (1)	① 周期律 ② 価電子		(1) 4点×2
(2)	(ア) B (イ) C (ウ) N	N (エ) Si	(2) 2点×7
	(オ) P $(カ) K$ $(キ) C$	Ca	(2) 2 3 1 1
(3)	Na < F < Ne		(3) 5 点
0 (1)	1 51 th 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	中野田・(み)	
2 (1)	① 名称:ホールピペット	実験器具:(ウ)	
	② 名称:メスフラスコ	実験器具:(ア)	$(1) (3 点 + 2 点) \times 4$
	③ 名称:コニカルビーカー	` '	
	④ 名称:ビュレット	実験器具:(イ)	
` ′	(ア), (エ)) (J)	(2) 完答 4 点
(3)	フェノールフタレイン	-0/	(3) 4 点
(4)	$CH_3COOH + NaOH \longrightarrow CH$	H_3 COONa + H_2 O	(4) 5 点
(5)	$0.800~\mathrm{mol/L}$	·.O.	(5) 8 点
(解説)	(5) 酢酸水溶液の濃度を x 〔m	iol/L〕とすると,薄めたあとの酢i	酸水溶液の濃度は
.QS	$x imes rac{10.0}{100} = rac{1}{10}x$ 〔me この薄めた酢酸水溶液を液 $rac{1}{10}x imes rac{10.0}{1000} = 0.100$ よって $x = 0.800$ mo	$0 \times \frac{8.00}{1000}$	
3 (1)	① (イ) ② (ウ) ③ ((カ) ④ (キ)	(1) 3 点×4
(2)	$C + O_2 \longrightarrow CO_2$		(2) 5 点
(3)	30 g		(3) 5 点
(4)	56 L		(4) 5 点
(5)	(b)		(5) 5 点
(解説)	(3) (2) より、炭素 C 1 $mol カ$ $\frac{110}{44} \times 12 = 30 g$	ゝら二酸化炭素 CO ₂ 1 mol が得られ	てるから

(4) 気体 1 mol の体積が 22.4 L だから

, rivingin.com

2025 年 11 月 19 日実施 岡山理科大学 推薦 A 生物基礎解答

1	1	細胞	② DNA	③ ATP	④ 代謝	
	(5)	酵素	\bigcirc β (B)	⑦ インスリン	⑧ グリコーゲン	
	9	α (A)	⑪ グルカゴン	① 有機物	① 同化 (炭酸同化)	
	13	葉緑体	① チラコイド	① ストロマ	16 生態系	
	17	供給	18 調整	① 文化的	20 基盤	
						2 点 $\times 20$
2	(1)	 洞房結 	節 (ペースメーカー) ② 延髄		(1) 2点×4
		③ 交感神	経	④ 副交感神絲	圣	(1) 2 3 11 7 1
	(2)	恒常性の維	持		\	(2) 3 点
	(3)	体温を上げ	るために交感神経が	「働き心臓の拍動が促	足進される。	(3) 4点
	(4)	内分泌腺:	副腎髄質 ホルギ	モンの名称:アドレ	ナリン	(4) 3点×2
	(5)	(A) 体 (循	盾環) (a) 僧帽弁 ((b) 大動脈弁 (c) :	大動脈 (d) 全身	60
			(e) 大静脈	(f) 右心房		~ ·
		(B) 肺 (循	f環) (g) 三尖弁 ((h) 右心室 (i) 月	市動脈弁 (j) 肺動脈	11,
		. \	(k) 肺	(l) 肺静脈 (m)	左心房) ·
		10		10	10	(5) 1点×15
	\	113	1		1113	
3	(1)	① 進化	② 系統 ③ 3	系統樹	. // .	(1) 2点×3
	(2)	種	20.		25.	(2) 3 点
1	(3)	(ア) d	(イ) b (ウ) c	(エ) a (オ)	e	(3) 2点×5
, '	(4)	生物の形質	が外部環境に合致し	ていること	, ,	(4) 5 点

III III COMI COMI COMI