北里大学 2024 年度 3/2

_] 次の各分の
(1) $f(x) = 2 \cdot 4^x - 2^{x+4} + 3$ とし、 $2^x = t$ とおく。 $f(x)$ を t で表すと、 $f(x) =$
であり, $-4 \le x \le 3$ のとき, t のとり得る値の範囲は \square である。また,
$-4 \le x \le 3$ のとき, $f(x)$ の最大値は \square である。
(2) 複素数 α , β は $\alpha+\beta=-1$, $\alpha\beta=3$ を満たしている。このとき, $\alpha^2+\beta^2=$,
$\alpha^3+\beta^3=$, $(\alpha^2+\alpha+1)^5=$ である。 $(x^2+x+1)^5$ の展開式における x^8 の
項の係数は である。
(3) 2 つの袋 A , B があり, A には赤球 3 個と白球 5 個, B には赤球 2 個と白球 6 個が
入っている。
(i) A , B の袋から球を 1 個ずつ取り出すとき、取り出した 2 個の玉の色が同じ
である確率はしてある。
(ii) A の袋から球を 1 個取り出す。その球が赤球であれば B の袋から球を 2 個取り
出し、そうでなければ $f B$ の袋から球を $f 3$ 個取り出す。このとき、 $f B$ の袋から取り
出した球のうち、少なくとも1個が赤球である確率は である。
(iii) \mathbf{B} の袋の球をすべて \mathbf{A} の袋に入れ, \mathbf{A} の袋から球を 1 個取り出す。取り出した球
が赤球であったとき,その赤球が最初に B の袋に入っていた確率は である。
(4) 1辺の長さが7の正三角形 ABC がある。正三角形 ABC の面積は である。
$CD=3$, $\angle BDC=60^\circ$ を満たし、線分 AC と線分 BD が交わるように点 D をとる。
線分 AC と線分 BD の交点を E とする。このとき、∠ADB= であり、
AD =

- 2 a, b を定数とし、関数 $f(x) = x^3 3x^2 + ax + b$ は x = 3 で極小値 -23 をとるとする。
 - (1) 定数 a, b の値を求めよ。
 - (2) 関数 f(x) の極大値を求めよ。
 - (3) k を定数とし、方程式 f(x)=kx の異なる実数解の個数が 2 個であるとする。 このとき、定数 k の値を求めよ。また、曲線 y=f(x) と直線 y=kx で囲まれた部分の 面積 S を求めよ。