日本大学 2024A1

1 次の問いに答えなさい。				
(1) $\sqrt{5}$ の小数部分を a とすると, $a+\frac{1}{a}=$ である。				
(2) i を虚数単位とするとき、				
$(i^{10}+3)(i^{13}+4) = $				
である。				
(3) $AB=4$, $BC=\sqrt{21}$, $AC=5$ である三角形 ABC の面積は である。				
(4) 5個の値 2, 5, 9, 11, 13をもつデータの平均値は であり、標準偏差は				
である。				
2 次の問いに答えなさい。				
(1) 座標平面上の 3 点 $(-3,1)$, $(1,-3)$, $(1,5)$ を通る円の中心の座標は				
(
(2) 1 から 12 までの番号を 1 つずつ書いた 12 枚のカードから同時に 2 枚を取り出すとき				
番号の和が3の倍数である確率は である。				
(2) ねけ字粉 しナフ - 曲炉				
(3) k は実数とする。曲線 $y=x^2$ を C とし、直線 $y=4x+k$ を ℓ とする。 C と ℓ が ちょうど 1 つの共有点をもつとき、 C と ℓ および y 軸で囲まれた部分の面積は				
りょうともうの共有点をもうとき、してもわよいす物で囲まれた的力の面積は				
「一」である。 $(4) x, y$ は実数とする。条件「 $2x^2+5xy+2y^2<0$ 」は条件「 $xy<1$ 」であるための				
<解答群>				
① 必要条件であるが十分条件ではない ② 十分条件であるが必要条件ではない				
③ 必要十分条件である ④ 必要条件でも十分条件でもない				

- ③ 数列 $\{a_n\}$ は各項がすべて正の等比数列とし、数列 $\{b_n\}$ は $b_n = \log_2 a_n$ を一般項とする数列とする。 $b_1 = -5$, $\sum_{k=1}^5 b_k = 5$ のとき、次の問いに答えなさい。
 - (1) $a_1 = \frac{}{}$, $a_2 = \frac{}{}$
 - (2) $a_1 \times a_2 \times \cdots \times a_{10} = 2$
 - (3) $a_1 \times a_2 \times \cdots \times a_{10}$ は 桁の整数である。ただし, $\log_{10} 2 = 0.3010$ とする。
- 4 平面上に傾きがそれぞれ 1, $-\frac{1}{2}$, -3 の直線 ℓ_1 , ℓ_2 , ℓ_3 がある。 ℓ_1 と ℓ_2 の交点を P, なす角を θ_P とする。 ℓ_2 と ℓ_3 の交点を Q, なす角を θ_Q とする。 ℓ_3 と ℓ_1 の交点を R, なす角を θ_R とする。P, Q, R はすべて異なるとし, $0 < \theta_P < \frac{\pi}{2}$, $0 < \theta_Q < \frac{\pi}{2}$, $0 < \theta_R < \frac{\pi}{2}$ とする。次の問いに答えなさい。

 - (2) P を通り、 ℓ_3 に直交する直線を ℓ_4 とし、 ℓ_3 と ℓ_4 の交点をS とする。Q を通り、 ℓ_1 に直交する直線を ℓ_5 とし、 ℓ_1 と ℓ_5 の交点をT とする。このとき、

$$\frac{RS}{SQ} = \frac{}{}$$
, $\frac{RT}{TP} = \frac{}{}$

である。

(3) ℓ_4 と ℓ_5 の交点を H とすると,

$$\overrightarrow{RH} = \overline{\overrightarrow{RP}} + \overline{\overrightarrow{RQ}}$$

である。

5	関数 ƒ	$f(x) = ax^3 + bx^2 + cx + d \text{then } f(-1) = 0,$	f'(-1) = 0,	$\lim_{x \to -1} \frac{f(x)}{x^2 + 2x + 1} = 3 \ \text{?}$
	満たす。	次の問いに答えなさい。		

(1)
$$b = \boxed{a + \boxed{}, c = \boxed{a + \boxed{}, d = a + \boxed{}}$$

(2)
$$a>0$$
 とする。 $f(x)$ が極大値 36 をとるとき, $a=$ である。