北里大学 2023 前期

1	以下の に当てはまる答えを求めよ。
	(1) a , b を実数として, 2 次方程式 $x^2+2ax+b=0$ の 2 つの解を α , β とする。 $\alpha^2+\beta^2$, $\alpha^3+\beta^3$
	を a , b を用いて表すと, $lpha^2+eta^2=$ ア であり, $lpha^3+eta^3=$ イ である。さらに, $a>0$,
	$lpha-eta\!=\!2$ であり,方程式 $x^2+2bx+4a^2\!+\!1\!=\!0$ が重解をもつとすると, a , b の値は
	$a=$ $\dot{\mathcal{D}}$, $b=$ \mathbf{I} である。
	(2) 不等式 $2x+y-2 \leq 0$, $x-y+1 \geq 0$, $x+2y-1 \geq 0$ の表す領域を D とする。点 (x, y) が

- (3) AB=2, BC=3, CA=4 である三角形 ABC がある。 $\cos A=$ キーであり、三角形 ABCの外接円の半径は $\boxed{}$ である。また、三角形 ABC の垂心を O とするとき、 \overrightarrow{AO} を \overrightarrow{AB} \overrightarrow{AC} を用いて表すと $\overrightarrow{AO} = \boxed{ f | \overrightarrow{AB} - \boxed{ a | \overrightarrow{AC}} }$ である。
- (4) $0 \le x \le \pi$ として、 $t = \sqrt{3} \sin x + \cos x$ とする。このとき t のとりうる値の範囲は $\boxed{}$ サ である。 $f(x) = 2\sin^2 x + \sqrt{3}\sin 2x + \sqrt{3}\sin x + \cos x + 1$ (0 $\leq x \leq \pi$) とする。f(x) を t を 用いて表すと $f(x) = \begin{bmatrix} \nu \end{bmatrix}$ となり、f(x) の最小値は $\begin{bmatrix} \lambda \end{bmatrix}$ である。また、方程式 f(x) = kの異なる実数解がちょうど2個存在するとき、定数 kのとりうる値の範囲は セ である。
- (5) 一般項が $a_n = \frac{1}{(n+1)(n+2)}$ と表される数列 $\{a_n\}$ について、初項から第 n 項までの和を 求めると $\sum_{k=1}^{n} a_k = \boxed{ }$ である。 $b_1 = 0$, $b_{n+1} = \frac{n+2}{n} b_n + 2 (n=1, 2, 3, \cdots)$ で定められた 数列 $\{b_n\}$ を考える。 $c_n = \frac{b_n}{n(n+1)}$ とおくとき, c_{n+1} を c_n と n を用いて表すと $c_{n+1} = \boxed{9}$
- (6) x+y+z=15 を満たす正の整数 x, y, z の組 (x, y, z) の総数は である。 $x+y+z \le 15$, $x \ge 0$, $y \ge 0$, $z \ge 0$ を満たす整数 x, y, z の組 (x, y, z) の総数は 下下 である。

2 a は 0 < a < 1 を満たす定数とし、関数 $f(x) = x^2 + 2ax - \frac{2}{3}a^2 + \frac{11}{12}a$ を考える。

O を原点とし、点 $A(a, a^2)$ をとる。放物線 C: y=f(x) 上を点 P が動くとき、三角形 OAP の面積の最小値を S(a) とする。このとき次の問いに答えよ。

- (1) 放物線 C の頂点の座標を a を用いて表せ。
- (2) 放物線 C上の点 Q(q, f(q)) における接線の傾きが a であるとき, q を a を用いて表せ。
- (3) S(a) を a を用いて表せ。
- (4) S(a) の値が最大となるときの a の値と、そのときの S(a) の値を求めよ。